Water Model

New Mexico Supercomputing Challenge, Final Report, April 3, 2019

Team 22 Las Cruces High School

By: Anabelle Fortin & Hannah Himelright Teacher: Lauren Curry Mentor: Maureen Psaila-Dombrowski

Table of Contents

Executive Summary- 3 Materials and Methods- 4 Results- 5 Data Chart- 5 Conclusion- 11 Personal Statement- 12 Acknowledgements- 13 Works Cited- 13

Executive Summary

One touchy question that seems to be at the back of everyone's minds seems to be, how much water do we have left? Local laws for water conservation like the time restrictions on watering gardens and lawns change our schedules. "Remember to turn off the faucet when you are done", seems to be a common statement in the average house, but do we actually know how much we are actually helping? Here, especially in New Mexico, we are used to thinking about our limited water resources, but often times when we go about with our daily lives, without knowing the true extent of our water usage.

Our project strives to help inform people about how much water they are using and estimates future aquifer depletion rates. It is a computer program in which the user can find out the water usage for a state,multiple states or averages for the entire United States.

It is important for us to conduct this project because water usage concerns are becoming more evident and relevant in our everyday lives. Our project informs others to start thinking about being more careful with the way they use water everyday, so that our limited water supply doesn't run out as fast as our model products.

We created this model using python. We got our sources from responsible online databases which we used to calculate other estimates, like the water usage per person. We used the equation $A = Pe^{rt}$ (In which A is the final amount, p is the beginning amount, r is the depletion rate and t is time in years) to predict aquifer depletion rates, because we assumed aquifer depletion was changing in an exponential pattern.

Overall, informing others, is what we strive to do with our computer model. Water usage is an important factor that we have to adress, before it's too late.

Materials and Methods

Our data was gathered from online research. A method we used to test the accuracy of our data was to compare it to other sources. For example, using the data we gathered, we calculated the daily water usage for an average United States resident (we got 118 gal/day). We found that our results fell outside the range estimated by USGS (about 80-100 gal/day).

Results

In summary, our computer program relayed the water usage and population data we gathered from our research. It also calculated the individual water usage for each state. For our model, the program predicts the future population and aquifer depletion rates of each state. We estimated the individual water usage of the average individual in each state by dividing the public usage supply by the population of each state. Furthermore, we predicted the future population of each state using the Pert formula. For the rate, we plugged in the population growth rates over the past 66 years of each state.

	· ·	66 year s Grow	% of	ml of rain	Fres h Grou nd Wate r Per Day (Mga	Fres h Surfa ce wate r per day (Mga	Publi c (Mga	estic	Irriga ation (Mga	k	Indu st (Mga	Minin g (Mga	Ther moEl ec (Mga
State	lation	th	US	fall	I)	I)	l/d)	l/d)	l/d)	l/d)	l/d)	l/d)	l/d)
Alab ama	4888 949	0.00 7011 1	1.49 %	1480	501	7750	762	37.7	223	26.2	494	30.2	6630
Alas ka	7380 68	0.02 655	0.22 %	572	226	408	99.2	11.4	1.52	0.13	8.35	36.4	66.7
Arizo na	7123 898	0.03 37	2.17 %	345	2760	3220	1200	24	4530	39.9	6.12	68.3	83.5
Arka nsas	3020 327	0.00 6785	0.92 %	1284	9590	4250	363	12.8	1160 0	34.1	157	3.07	1440
Calif ornia	3977 6830	0.01 985	12.1 3%	563	1710 0	8540 0	5150	127	1900 0	183	399	45.8	36.4
Color ado	5684 203	0.02 1676	1.73 %	405	1500	8800	844	35.4	9000	33.3	84.1	7.7	37.2

Below a chart with all the data we gathered.

Conn ectic	3588	0.00	1.09										
ut	683	875	%	1279	128	489	240	30.8	11.3	1.15	181	4.25	126
Dela ware	9711 80	0.01 661	0.30 %	1160	170	364	86.4	14.5	113	1.34	302	0.65	14.4
Flori da	2131 2211	0.03 04	6.50 %	1385	3580	2110	2380	177	2450	26.1	245	130	434
Geor gia	1054 5138	0.03 04	3.21 %	1287	1150	2130	1070	104	738	44.9	475	19.8	741
Haw aii	1426 393	0.01 591	0.43 %	1618	338	334	267	8.1	385	1.61	0.24	0.92	1.48
ldah o	1753 860	0.01 592	0.53 %	481	5350	1240 0	276	70.2	1530 0	50.8	57.6	23.1	1.79
Illinoi s	1276 8320	0.00 583	3.89 %	996	870	9600	1480	92.1	234	36.2	431	55	8140
India na	6699 629	0.00 7914	2.04 %	1060	699	6480	628	127	133	39.2	2290	126	3820
lowa	3160 553	0.00 271	0.96 %	864	630	2060	390	32	35	165	288	75.5	1680
Kans as	2918 515	0.00 64	0.89 %	733	2840	1180	351	17.7	2680	104	38.1	5.99	817
Kent ucky	4472 265	0.00 621	1.36 %	1242	207	2630	553	22.1	39.6	40.8	225	40.6	1860
Louis iana	4682 509	0.00 843	1.43 %	1528	1740	7000	709	39.3	1050	6.35	2140	6.24	4040
Main e	1341 582	0.00 5704	0.41 %	1072	84.8	424	85	31.6	18.9	2.05	182	6.33	5.3
Mary land	6079 602	0.01 4288	1.85 %	1131	295	935	750	114	64.1	8	49.4	16.8	220
Mass achu	6895	0.00	2.10										
setts	917	5653	%	1211	380	540	648	35.1	139	1.03	27.9	9.6	50.1
Michi gan	9991 177	0.00 672	3.05 %	833	767	9290	1030	187	332	23.7	518	85.7	7800

Minn esot	5628	0.00	1.72										
а	162	9327	%	693	776	2450	515	82.2	276	58.9	259	9.2	2010
Missi ssipp i	2982 785	0.00 4788	0.91 %	1499	2260	427	400	48.1	1770	17.1	182	9.45	118
Miss ouri	6135 888	0.00 6549	1.87 %	1071	1740	6690	797	57.5	1370	63.7	85.2	29.6	5860
Mont ana	1062 330	0.00 8599	0.32 %	390	188	9610	153	23.7	9450	42.2	9.67	21.6	75.7
Nebr aska	1932 549	0.00 5512	0.59 %	599	5810	3680	275	19	6090	110	44.3	9.6	2920
Neva da	3056 824	0.04 4098 3	0.93 %	241	1360	1520	531	35.8	2070	4.94	5.71	195	8.73
New Ham pshir e	1350 575	0.01 3902	0.41 %	1103	80.4	162	95.5	29.7	5.2	0.84	12.6	6.13	74.8
New Jers ey	9032 872	0.00 9319 48	2.75 %	1196	569	1310	1180	90.7	93.9	0.88	94.1	58.3	361
New Mexi co	2090 708	0.01 6921	0.64 %	370	1350	1460	292	24.6	2370	32	3.4	56.8	33.5
New York	1986 2512	0.00 4337 1	6.06 %	1062	890	4420	2420	187	53.5	25.8	312	40.2	2210
Nort h Carol		0.01	3.17										
ina	0149	3871	%	1279	520	8400	938	169	325	66.5	193	38.3	6180
Nort h	7552 38	0.00 3052 8	0.23 %	452	187	1190	84.2	3.69	233	20.8	19.6	30.7	983

Dako ta													
Ohio	1169 4664	0.00 5749 98	3.57 %	993	866	5660	1310	139	55	24.6	348	129	4480
Okla hom a	3940 521	0.00 8537 8	1.20 %	927	960	848	611	30.3	931	70.6	52	37.4	71.7
Oreg on	4199 563	0.01 4996 9	1.28 %	695	1480	5100	567	73.9	5160	16.3	105	11.3	11.4
Penn sylva nia	1282 3989	0.00 2985 2	3.91 %	1089	622	5410	1390	208	34.3	39.5	645	38.1	3580
Rhod e Islan d	1061 712	0.00 4366 9	0.32 %	1218	32.7	88.8	97.5	6.57	4.25	0.12	2.05	2.92	1.33
Sout h Carol ina	5088 916	0.00 4366 9	1.55 %	1264	365	5810	633	118	126	9.87	286	10.1	4980
Sout h Dako ta	8777 90	0.00 4273 868	0.27 %	511	238	162	72	5.56	211	47.9	24.4	8.65	2.39
Tenn esse e		0.01 0657	2.07 %	1376	430	5990	850	42.8	63.8	23.4	734	31.4	4620
Texa s	2870 4330	0.01 9463 8	8.75 %	734	6170	1270 0	2890	137	5490	276	323	131	9640
Utah	3159 345	0.02 2549	0.96 %	310	1050	2820	627	10.4	3030	15.9	54.2	3.47	61

		0.00											
Verm	6239	7619	0.19										
ont	60	35	%	1085	36.7	54.2	42.7	11	3.11	5.87	11	4.56	0.8
Virgi	8525	0.01	2.60										
nia	660	4092	%	1125	284	4030	697	125	51.7	27	370	24.9	2910
Was													
hingt	7530	0.01	2.30										
on	552	6963	%	976	1530	2730	867	110	2520	29.7	412	17	52.2
West		-0.00											
Virgi	1803	1378	0.55										
nia	077	8	%	1147	130	2190	185	31.3	4.15	5.08	424	53.3	1570
		0.00											
Wisc	5818	7883	1.77										
onsin	049	1	%	829	772	4980	479	76.4	460	74.5	382	29.3	4210
Wyo	5737	0.01	0.17										
ming	20	0617	%	328	652	7400	101	8.93	7790	16.2	8.04	44.5	51.8

Groundwater Depletion (Km**3/yr)

Alabama 0.356 Alaska 0.0001 Arizona 0.01 Arkansas 2 California 1.54 Colorado 1.237 Connecticut 0.0001 Delaware 0.042 Florida 0.356 Georgia 0.033 Hawaii 0.002 Idaho 0.237 Illinois 0.022 Indiana 0.022 Iowa 0.022 Kansas 2.406 Kentucky 0.0001 Louisiana 2.356

Maine 0.0001 Maryland 0.042 Massachusetts 0.0001 Michigan 0.022 Minnesota 0.022 Mississippi 3.045 Missouri 0.022 Montana 0.0001 Nebraska 2.7 Nevada 0.061 New Hampshire 0.0001 New Jersey 0.011 New Mexico 0.761 New York 0.011 North Carolina 0.053 North Dakota 0.0001 Ohio 0.0001 Oklahoma 0.262

Oregon 0.057 Pennsylvania 0.0001 Rhode Island 0.0001 South Carolina 0.062 South Dakota 0.062 Tennessee 2 Texas 3.349 Utah 0.12 Vermont 0.0001 Virginia 0.244 Washington 0.057 West Virginia 0.0001 Wisconsin 0.022 Wyoming 0.386

Here is a link to our program: https://repl.it/@supercompHA/Water-Simulation-Supercomputing

Conclusion

In conclusion, our program emphasizes the importance of freshwater in the United States , and models the alarming aquifer depletion rates. We plan continue this project over the next two years. Next year we want to focus on the counties in New Mexico. We hope to gather more local data.

Personal Statement

Personal Statement

Anabelle Fortin is a sophomore currently attending Las Cruces High school. She plans to major in the computer science field, though she spends a lot of her free time working with the fine arts and computer graphics. She was interested in conducting this model experiment because she wanted to know more about how human activity affects the environment, and she wanted to practice her programming skills.

Hannah Himelright is a sophomore at Las Cruces High school. She wants to pursue a career in the STEM field, and is interested in mathematics and computer science. Hannah was excited to create this simulation because she was concerned about our accessibility to clean water in the future. She hopes to learn a lot about computer science and our water usage through this project!

Acknowledgements

Thank you to Maureen Psaila-Dombrowski an employee at the Los Alamos National Laboratory, for providing us with helpful statistics on water usage and ideas.

Thank you to Lauren Curry our computer science teacher and sponsor, for helping us to organize our project and keep us on track.

Thank you to David Himelright a computer scientist and mathematician at White Sands Missile range, for support and advice with the program.

Thank you to David Janecky, a scientist at the Los Alamos National Laboratory, for giving us inspiration.

Thank you to Phil Campbell, for giving us information on our community's local water conservation and usage.

Thank you to Stephen Pate and Ann Gomez for evaluating our projects and offering us constructive suggestions.

Works Cited

US States - Ranked by Population 2019. (n.d.). Retrieved March 30, 2019, from <u>http://worldpopulationreview.com/states/</u>

List of states and territories of the United States by population. (2019, March 30). Retrieved March 30, 2019, from

https://en.wikipedia.org/wiki/List_of_states_and_territories_of_the_United_States_by_p opulation

US States by Population Growth Rate 1950-2016. (2018, February 27). Retrieved from <u>http://factsmaps.com/us-states-population-growth-rate-1950-2016/</u>

Konikow, L. F. (2013, May 10). Groundwater Depletion in the United States (1900–2008). Retrieved from <u>https://pubs.usgs.gov/sir/2013/5079/SIR2013-5079.pdf</u>